Муниципальное казенное общеобразовательное учреждение «Ключинская средняя школа»

«РАССМОТРЕНО» на заседании методического совета школы Протокол № / от «Зо » ОВ 2016 г.

 «УТВЕРЖДАЮ» Директор МКОУ «Ключинская СШ» Ворожнова Н.В.

Приказ № 192 о/д от «31» августа 2016 г.

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

Курс: «О	сновы обще	й химии»					
Класс:1	1						
Сроки реализа	щии:20	16 - 2017	уч. год				
Составитель:	Жданкина	Татьяна	Юрьевна,	учитель	химии,	биологии,	высшей
квалификацио	нной катего	оии					

Пояснительная записка

Актуальность. Основа химических знаний закладывается на уроках химии и при подготовке к ним. Однако, нужно отчетливо понимать – времени, отводимого на изучение предмета «Химия» в учебном плане школы, а это базовый уровень, из расчета 1 недельного часа, недостаточно для того, чтобы без дополнительных усилий выпускник смог успешно пройти итоговую аттестацию в форме ЕГЭ. Учащиеся, выбравшие данный курс ориентированы на ГИА в форме ЕГЭ по химии с последующим поступлением в ВУЗ. Рабочая программа курса «Основы общей химии» ориентирована на укрепление общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций в рамках общей химии».

Цели элективного курса:

- освоение системы знаний о фундаментальных законах, теориях, фактах химии, необходимых для понимания научной картины мира;
- **овладение умениями:** характеризовать вещества, материалы и химические реакции; выполнять лабораторные эксперименты; проводить расчеты по химическим формулам и уравнениям; осуществлять поиск химической информации и оценивать ее достоверность; ориентироваться и принимать решения в проблемных ситуациях;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения химической науки и ее вклада в технический прогресс цивилизации; сложных и противоречивых путей развития идей, теорий и концепций современной химии;
- **воспитание убежденности** в том, что химия мощный инструмент воздействия на окружающую среду, и чувства ответственности за применение полученных знаний и умений;
- применение полученных знаний и умений для: безопасной работы с веществами в лаборатории, быту и на производстве; решения практических задач в повседневной жизни; предупреждения явлений, наносящих вред здоровью человека и окружающей среде; проведения исследовательских работ; сознательного выбора профессии, связанной с химией.

Специфика курса заключается в формировании целостной картины видения способов использования обучающимся химических законов и закономерностей для объяснения химического строения, химических процессов и явлений. Курс ориентирован сформировать понимание взаимосвязи и зависимости качественного и количественного строения и химизма процессов, происходящих с веществами. Содержание курса дополняет материал, изучаемый на уроках химии, и значительно расширяет число выполняемых упражнений.

Содержание рабочей программы

Общая характеристика учебного курса

Приоритетами в освоении курса являются: использование для познания окружающего мира различных методов (наблюдения, измерения, опыты, эксперимент); проведение практических и лабораторных работ, несложных экспериментов и описание их результатов; использование для решения познавательных задач различных источников информации; соблюдение норм и правил поведения в химических лабораториях, в окружающей среде, а также правил здорового образа жизни.

Данная рабочая программа реализуется через формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций за счёт использования технологий опорных конспектов, дидактических материалов и применения дидактической многомерной технологии при структурировании знаний о веществах, гомологического ряда веществ. Технология опорных конспектов позволяет давать и запоминать информацию блоками; дидактическая многомерная технология — большой по объёму и содержанию материал структурирует в логико-смысловую модель; дидактические материалы обеспечивают экономию времени при объяснении нового материала; представляют материал в более наглядном доступном для восприятия виде, воздействует на разные системы восприятия учащихся, обеспечивая лучшее усвоение.

Место учебного курса в учебном плане

Программа рассчитана на изучение курса «Основы общей химии» в 11 классе 34 часа, из расчета – 1 учебный час в неделю.

Результаты обучения

знать / понимать

- важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- *основные законы химии*: сохранения массы веществ, постоянства состава, периодический закон;
- *основные теории химии*: химической связи, электролитической диссоциации, строения органических соединений;
- важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

уметь

- *называть* изученные вещества по «тривиальной» или международной номенклатуре;
- *определять*: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
- характеризовать: элементы малых периодов по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;
- *объяснять*: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;

- *выполнять химический эксперимент* по распознаванию важнейших неорганических и органических веществ;
- *проводить* самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- объяснения химических явлений, происходящих в природе, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
- приготовления растворов заданной концентрации в быту и на производстве;
- критической оценки достоверности химической информации, поступающей из разных источников.

Содержание учебного курса

Основные понятия, законы и теории химии – 5 ч.

Предмет и задачи химии. Место химии среди естественных наук.

Атомно-молекулярное учение. Молекулы. Атомы. Постоянство состава вещества. Относительная атомная и относительная молекулярная масса. Закон сохранения массы, его значение в химии. Моль — единица количества вещества. Молярная масса. Число Авогадро.

Строение ядер атомов химических элементов и электронных оболочек атомов на примере элементов 1, 2, 3 и 4-го периодов периодической системы. Изотопы.

Периодический закон химических элементов Д. И. Менделеева. Распределение электронов в атомах элементов первых четырех периодов. Малые и большие периоды, группы и подгруппы. Характеристика отдельных химических элементов главных подгрупп на основании положения в периодической системе и строения атома. Значение периодического закона для понимания научной картины мира, развития науки и техники.

Химический элемент, простое вещество, сложное вещество. Знаки химических элементов и химические формулы. Расчет массовой доли химического элемента в веществе по его формуле.

Строение веществ – 17 ч.

Типы химических связей: ковалентная (полярная и неполярная), ионная, водородная, металлическая. Примеры соединений со связями разных типов. Валентность и степень окисления. Комплексные соединения. Кристаллические решётки.

Водород. Химические свойства.

Кислород. Химические, физические свойства. Аллотропия. Применение кислорода. Круговорот кислорода в природе. Вода. Физические и химические свойства. Кристаллогидраты. Значение воды в промышленности, сельском хозяйстве, быту, природе. Охрана водоемов от загрязнения.

Галогены.

Подгруппа углерода. Общая характеристика элементов IV группы главной подгруппы. Химические свойства. Соединения углерода: оксиды (II, IV), угольная кислота и ее соли.

Соединения углеводородов.

Подгруппа кислорода. Общая характеристика элементов главной подгруппы VI группы. Сера, ее физические и химические свойства. Соединения серы: сероводород, оксиды серы. Серная кислота, ее свойства, химические основы производства.

Общая характеристика элементов главной подгруппы V группы. Азот. Физические и химические свойства. Соединения азота: аммиак, соли аммония, оксиды азота, азотная кислота, соли азотной кислоты (физические и химические свойства). Производство аммиака. Применение аммиака, азотной кислоты и ее солей. Фосфор, его аллотропные формы, физические и химические свойства. Оксиды фосфора (V), фосфорная кислота и ее соли.

Металлы. Положение в периодической системе. Особенности строения их атомов. Металлическая связь. Характерные физические и химические свойства. Коррозия металлов.

Щелочные металлы. Общая характеристика на основе положения в периодической системе Д. И. Менделеева. Соединения натрия, калия в природе, их применение. Калийные удобрения.

Общая характеристика элементов главных подгрупп II и III групп периодической системы Д. И. Менделеева. Кальций, его соединения в природе.

Алюминий. Характеристика алюминия и его соединений. Амфотерность оксида алюминия. Железо. Характеристика железа, оксидов, гидроксидов, солей железа (II) и (III).

Химические реакции и их общая характеристика - 6 ч.

Растворы. Растворимость веществ. Зависимость растворимости веществ от их природы, температуры, давления. Концентрация растворов. Закон Гесса. Энтропия. Энергия Гиббса. Скорость химических реакций и факторы, влияющие на нее. Катализ и катализаторы.

Химическое равновесие. Принцип Ле Шателье.

Растворы электролитов. Реакции в растворах электролитов – 6 ч.

Электролитическая диссоциация. Степень диссоциации. Сильные и слабые электролиты. Реакции ионного обмена. Электрическая диссоциация кислот, щелочей и солей. Типы химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Тепловой эффект химических реакций.

Скорость химических реакций. Зависимость скорости от природы реагирующих веществ, концентрации, температуры. Катализ. Обратимость химических реакций. Химическое равновесие и условия его смещения.

Контроль уровня обученности

Процедура контроля уровня обученности запланирована посредством выполнения практических заданий в каждом разделе курса. Форма практических заданий приближена

к форме ЕГЭ. Правильное выполнение практических заданий от 50% и выше соответствует отметке — «зачет», правильное выполнение практических заданий ниже 50% — «незачет».

Описание материально-технического обеспечения образовательного процесса Учебные пособия:

За основу взят учебник О. С. Габриеляна «Химия. 11», с углубленным уровнем изучения.

В качестве информационного материала используется дидактический раздаточный материал состоящий из таблиц: периодической, основные соотношения в химии, требования к решению и оформлению расчётных задач, относительной молекулярной массы неорганических и органических веществ, ряд электроотрицательности неметаллов, качественные реакции на органические вещества и функциональные группы, виды изомерии, обобщающие таблицы сравнительной характеристики по всем изучаемым гомологическим рядам, обучающий дидактический материал по теме «Строение и классификация органических соединений и следующие источники информации:

- 1. О. С. Габриелян, Г.Г. Лысова «Химия 11», Москва, Дрофа.
- 2. О. С. Габриелян, Г.Г. Лысова, А.Г. Введенская «Настольная книга учителя химии 11 класс» Москва, Дрофа 2009
- 3. Денисова, В. Г. Материалы для подготовки к ЕГЭ по химии за курс основной школы. Волгоград: Учитель, 2012.
- 4. В.Н.Доронькин, А.Г.Бережная и др. «Химия: подготовка к ЕГЭ 2016». учебнометодическое пособие. Ростов на- Дону: Легион, 2016 5. Сайт ФИПИ.

Таблицы:

«Строение атома»

«Электронные конфигурации атомов»

Периодическая система химических элементов

Модели кристаллических решёток веществ

«Классификация химических связей:»

«Образование водородной связи»

«Изомеры и гомологи»

«Классификация химических реакций в органической и неорганической химии»

«Электролитическая диссоциация».

«Электролиз», «Способы получения металлов».

Образцы веществ различных классов, коллекции «Минералы», «Горные породы», «Нефть», «Уголь».

Образцы металлов, модели кристаллических решёток.

Рабочая станция учителя с выходом в сети Интернет.

ПРИЛОЖЕНИЕ

Календарно-тематическое планирование элективного курса «Основы общей химии». 11 класс.

№ урока	Тема урока	Цель - как запрограммированный результат	Дата проведения	Виды контроля		
урока	Основные понятия, законы и теории химии					
	Стехиометрические химические	Использовать стехиометрические законы при		Текущий		
1	законы.	решении практических задач.				
	Теория строения атома как научная	Оперировать закономерностями строения		Текущий		
2	основа изучения химии	атома.				
3	Периодический закон и периодическая система Д.И.Менделеева в свете электронной теории.	Использовать ПСХЭ для выполнения заданий о строении атома и его производных.		Текущий		
4	Общая характеристика s -, p -, d - и f - элементов. Положение металлов и неметаллов в ПС.	Строить и читать электронные формулы химических элементов.		Текущий		
5	Выполнение практических заданий раздела в форме ЕГЭ	Установление соответствия уровня обученности требованиям программы курса.		Тематический		
	Строение веществ					
6	Роль теории строения атома в объяснении образования химической связи.	Определять типы химических связей в веществах.		Текущий		
7	Виды химической связи и пространственное строение веществ.	Находить взаимосвязь между строением и типом химической связи.		Текущий		
8	Аморфное и кристаллическое состояния веществ. Кристаллические решетки.	Устанавливать взаимосвязи между строением, типом кристаллических решеток и физическими свойствами веществ		Текущий		
9	Водород. Кислород. Химические, физические свойства. Аллотропия.	Соотносить вещества и их свойства. Писать уравнения химических реакций, характеризующие свойства водорода и кислорода.		Текущий		
10	Вода. Физические и химические	Характеризовать взаимосвязь строения и		Текущий		

	свойства. Кристаллогидраты.	свойств воды. Соотносить химические и физические свойства воды.	
11	Галогены.	Характеризовать строение и свойства галогенов. Писать уравнения химических реакций с участием галогенов и их соединений.	Текущий
12	Подгруппа углерода.	Характеризовать строение и свойства углерода и кремния. Писать уравнения химических реакций с участием углерода, кремния и их соединений.	Текущий
13	Соединения углеводородов: строение, превращения.	Характеризовать строение, свойства и получение углеводородов. Соотносить особенности строения и свойства с конкретными углеводородами. Писать уравнения химических реакций с участие углеводородов.	Текущий
14	Соединения кислородсодержащих углеводородов: строение, превращения.	Характеризовать строение, свойства и получение кислородсодержащих углеводородов. Соотносить особенности строения и свойства с конкретными кислородсодержащими углеводородами. Писать уравнения химических реакций с участие кислородсодержащих углеводородов.	Текущий
15	Соединения азотсодержащих углеводородов: строение, превращения.	Характеризовать строение, свойства и получение азотсодержащих углеводородов. Соотносить особенности строения и свойства с конкретными азотсодержащими углеводородами. Писать уравнения химических реакций с участие азотсодержащих углеводородов.	Текущий
16	Подгруппа кислорода.	Характеризовать строение и свойства серы и её соединений. Писать уравнения химических реакций с участием серы и иё соединений.	Текущий
17	Подгруппа азота.	Характеризовать строение и свойства азота и	Текущий

		фосфора, их соединений. Писать уравнения химических реакций с участием азота и фосфора и их соединений.	
18	Металлы. Щелочные и щелочноземельные металлы.	Характеризовать строение и свойства металлов. Конкретизировать особенности щелочных и щелочноземельных металлов. Писать уравнения химических реакций с участием металлов и их соединений.	Текущий
19	Алюминий.	Характеризовать строение и свойства алюминия как амфотерного элемента. Писать уравнения химических реакций с участием алюминия и его соединений.	Текущий
20	Железо.	Характеризовать строение и свойства железа как амфотерного элемента. Писать уравнения химических реакций с участием железа и его соединений.	Текущий
21	Комплексные соединения.	Строить комплексные соединения.	Текущий
22	Выполнение практических заданий раздела в форме ЕГЭ	Установление соответствия уровня обученности требованиям программы курса.	Тематический
Химиче	еские реакции и их общая характерист		
23	Химические реакции в системе природных взаимодействий. Классификация неорганических и органических реакций.	Определять типы химических реакций по всем имеющимся классификациям.	Текущий
24	Тепловые эффекты реакций. Энтальпия. Термохимические уравнения. Закон Гесса.	Писать термохимические уравнения химических реакций.	Текущий
25	Решение расчетных задач по теме: «Термохимические уравнения. Закон Гесса».	Решать расчетные задачи по термохимическим уравнениям.	Текущий
26	Скорость химических реакций и факторы, влияющие на нее.	Определять скорость химических реакций при различных факторах.	Текущий

27	Химическое равновесие. Константа	Оперировать принципом Ле Шателье при	Текущий
	равновесия. Принцип Ле Шателье.	определении смещения химического	
		равновесия в системе.	
28	Выполнение практических заданий	Установление соответствия уровня	Тематический
	раздела в форме ЕГЭ	обученности требованиям программы курса.	
	Растворы электрол	питов. Реакции в растворах электролитов. (6 часо	ов)
29	Реакции ионного обмена. Кислотно-	Составлять реакции ионного обмена.	Текущий
	основные взаимодействия.		
30	Гидролиз неорганических и	Определять возможность гидролиза и среду	Текущий
	органических соединений.	раствора. Определять среду раствора веществ.	
31	Окислительно-восстановительные	Составлять окислительно-восстановительные	Текущий
	реакции в растворах. Методы	реакции	
	составления ОВР.		
32	Электролиз как электрохимический	Прогнозировать продукты электролиза	Текущий
	процесс.	веществ	
33	Обобщение знаний о неорганических и	Писать уравнения генетических превращений	Текущий
	органических реакциях.	неорганических и органических веществ	
34	Выполнение практических заданий	Установление соответствия уровня	Тематический
	раздела в форме ЕГЭ	обученности требованиям программы курса.	